Перевод: со всех языков на все языки

со всех языков на все языки

simulation of human behavior

  • 1 simulation of human behavior

    Большой англо-русский и русско-английский словарь > simulation of human behavior

  • 2 simulation of human behavior

    Универсальный англо-русский словарь > simulation of human behavior

  • 3 simulation of human behavior

    English-Russian dictionary of computer science and programming > simulation of human behavior

  • 4 simulation

    моделирование, проведение модельных экспериментов; имитационное моделирование, проведение имитационных экспериментов
    - analog simulation
    - analog-digital simulation
    - architectural simulation
    - behavioral simulation
    - circuit simulation
    - compiled-code simulation
    - compiled simulation
    - compiler-driven simulation
    - computer simulation
    - concurrent fault simulation
    - concurrent simulation
    - continuous simulation
    - design verification simulation
    - deterministic simulation
    - digital simulation
    - discrete simulation
    - environment simulation
    - event-driven simulation
    - fault simulation
    - fault-free simulation
    - functional-level simulation
    - functional simulation
    - gate-level simulation
    - hand simulation
    - hardware-based simulation
    - hardware simulation
    - hybrid simulation
    - in-circuit simulation
    - knowledge-based simulation
    - logic simulation
    - low-level simulation
    - machine simulation
    - man-machine simulation
    - mathematical simulation
    - maximum-delay simulation
    - mixed-level simulation
    - mixed-mode simulation
    - mixed-signal simulation
    - multirate simulation
    - next event simulation
    - no-fault simulation
    - nominal-delay simulation
    - nonterminating simulation
    - parallel event simulation
    - physical simulation
    - potential-plane simulation
    - rank-order simulation
    - real-time simulation
    - sampling simulation
    - simulation of human behavior
    - single-rate simulation
    - software simulation
    - source-to-target simulation
    - stochastic simulation
    - switch-level simulation
    - system simulation
    - terminating simulation
    - three-state simulation
    - time simulation
    - transient simulation
    - transistor-level simulation
    - true-value simulation
    - unit-delay simulation
    - zero-delay simulation

    English-Russian dictionary of computer science and programming > simulation

  • 5 simulation

    Англо-русский современный словарь > simulation

  • 6 моделирование человеческого поведения

    Большой англо-русский и русско-английский словарь > моделирование человеческого поведения

  • 7 моделирование человеческого поведения

    Russian-english psychology dictionary > моделирование человеческого поведения

  • 8 моделирование человеческого поведения

    Русско-английский словарь по вычислительной технике и программированию > моделирование человеческого поведения

  • 9 моделирование человеческого поведения

    Information technology: simulation of human behavior

    Универсальный русско-английский словарь > моделирование человеческого поведения

  • 10 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 11 Cognitive Science

       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense.... [P]eople and intelligent computers turn out to be merely different manifestations of the same underlying phenomenon. (Haugeland, 1981b, p. 31)
       2) Experimental Psychology, Theoretical Linguistics, and Computational Simulation of Cognitive Processes Are All Components of Cognitive Science
       I went away from the Symposium with a strong conviction, more intuitive than rational, that human experimental psychology, theoretical linguistics, and computer simulation of cognitive processes were all pieces of a larger whole, and that the future would see progressive elaboration and coordination of their shared concerns.... I have been working toward a cognitive science for about twenty years beginning before I knew what to call it. (G. A. Miller, 1979, p. 9)
        Cognitive Science studies the nature of cognition in human beings, other animals, and inanimate machines (if such a thing is possible). While computers are helpful within cognitive science, they are not essential to its being. A science of cognition could still be pursued even without these machines.
        Computer Science studies various kinds of problems and the use of computers to solve them, without concern for the means by which we humans might otherwise resolve them. There could be no computer science if there were no machines of this kind, because they are indispensable to its being. Artificial Intelligence is a special branch of computer science that investigates the extent to which the mental powers of human beings can be captured by means of machines.
       There could be cognitive science without artificial intelligence but there could be no artificial intelligence without cognitive science. One final caveat: In the case of an emerging new discipline such as cognitive science there is an almost irresistible temptation to identify the discipline itself (as a field of inquiry) with one of the theories that inspired it (such as the computational conception...). This, however, is a mistake. The field of inquiry (or "domain") stands to specific theories as questions stand to possible answers. The computational conception should properly be viewed as a research program in cognitive science, where "research programs" are answers that continue to attract followers. (Fetzer, 1996, pp. xvi-xvii)
       What is the nature of knowledge and how is this knowledge used? These questions lie at the core of both psychology and artificial intelligence.
       The psychologist who studies "knowledge systems" wants to know how concepts are structured in the human mind, how such concepts develop, and how they are used in understanding and behavior. The artificial intelligence researcher wants to know how to program a computer so that it can understand and interact with the outside world. The two orientations intersect when the psychologist and the computer scientist agree that the best way to approach the problem of building an intelligent machine is to emulate the human conceptual mechanisms that deal with language.... The name "cognitive science" has been used to refer to this convergence of interests in psychology and artificial intelligence....
       This working partnership in "cognitive science" does not mean that psychologists and computer scientists are developing a single comprehensive theory in which people are no different from machines. Psychology and artificial intelligence have many points of difference in methods and goals.... We simply want to work on an important area of overlapping interest, namely a theory of knowledge systems. As it turns out, this overlap is substantial. For both people and machines, each in their own way, there is a serious problem in common of making sense out of what they hear, see, or are told about the world. The conceptual apparatus necessary to perform even a partial feat of understanding is formidable and fascinating. (Schank & Abelson, 1977, pp. 1-2)
       Within the last dozen years a general change in scientific outlook has occurred, consonant with the point of view represented here. One can date the change roughly from 1956: in psychology, by the appearance of Bruner, Goodnow, and Austin's Study of Thinking and George Miller's "The Magical Number Seven"; in linguistics, by Noam Chomsky's "Three Models of Language"; and in computer science, by our own paper on the Logic Theory Machine. (Newell & Simon, 1972, p. 4)

    Historical dictionary of quotations in cognitive science > Cognitive Science

  • 12 Consciousness

       Consciousness is what makes the mind-body problem really intractable.
    ... Without consciousness the mind-body problem would be much less interesting. With consciousness it seems hopeless. (T. Nagel, 1979, pp. 165-166)
       This approach to understanding sensory qualia is both theoretically and empirically motivated... [;] it suggests an effective means of expressing the allegedly inexpressible. The "ineffable" pink of one's current visual sensation may be richly and precisely expressed as a 95Hz/80Hz/80Hz "chord" in the relevant triune cortical system. The "unconveyable" taste sensation produced by the fabled Australian health tonic Vegamite might be poignantly conveyed as a 85/80/90/15 "chord" in one's four channeled gustatory system.... And the "indescribably" olfactory sensation produced by a newly opened rose might be quite accurately described as a 95/35/10/80/60/55 "chord" in some six-dimensional space within one's olfactory bulb. (P. M. Churchland, 1989, p. 106)
       One of philosophy's favorite facets of mentality has received scant attention from cognitive psychologists, and that is consciousness itself: fullblown, introspective, inner-world phenomenological consciousness. In fact if one looks in the obvious places... one finds not so much a lack of interest as a deliberate and adroit avoidance of the issue. I think I know why. Consciousness appears to be the last bastion of occult properties, epiphenomena, and immeasurable subjective states-in short, the one area of mind best left to the philosophers, who are welcome to it. Let them make fools of themselves trying to corral the quicksilver of "phenomenology" into a respectable theory. (Dennett, 1978b, p. 149)
       When I am thinking about anything, my consciousness consists of a number of ideas.... But every idea can be resolved into elements... and these elements are sensations. (Titchener, 1910, p. 33)
       A Darwin machine now provides a framework for thinking about thought, indeed one that may be a reasonable first approximation to the actual brain machinery underlying thought. An intracerebral Darwin Machine need not try out one sequence at a time against memory; it may be able to try out dozens, if not hundreds, simultaneously, shape up new generations in milliseconds, and thus initiate insightful actions without overt trial and error. This massively parallel selection among stochastic sequences is more analogous to the ways of darwinian biology than to the "von Neumann" serial computer. Which is why I call it a Darwin Machine instead; it shapes up thoughts in milliseconds rather than millennia, and uses innocuous remembered environments rather than noxious real-life ones. It may well create the uniquely human aspect of our consciousness. (Calvin, 1990, pp. 261-262)
       To suppose the mind to exist in two different states, in the same moment, is a manifest absurdity. To the whole series of states of the mind, then, whatever the individual, momentary successive states may be, I give the name of our consciousness.... There are not sensations, thoughts, passions, and also consciousness, any more than there is quadruped or animal, as a separate being to be added to the wolves, tygers, elephants, and other living creatures.... The fallacy of conceiving consciousness to be something different from the feeling, which is said to be its object, has arisen, in a great measure, from the use of the personal pronoun I. (T. Brown, 1970, p. 336)
       The human capacity for speech is certainly unique. But the gulf between it and the behavior of animals no longer seems unbridgeable.... What does this leave us with, then, which is characteristically human?.... t resides in the human capacity for consciousness and self-consciousness. (Rose, 1976, p. 177)
       [Human consciousness] depends wholly on our seeing the outside world in such categories. And the problems of consciousness arise from putting reconstitution beside internalization, from our also being able to see ourselves as if we were objects in the outside world. That is in the very nature of language; it is impossible to have a symbolic system without it.... The Cartesian dualism between mind and body arises directly from this, and so do all the famous paradoxes, both in mathematics and in linguistics.... (Bronowski, 1978, pp. 38-39)
       It seems to me that there are at least four different viewpoints-or extremes of viewpoint-that one may reasonably hold on the matter [of computation and conscious thinking]:
       A. All thinking is computation; in particular, feelings of conscious awareness are evoked merely by the carrying out of appropriate computations.
       B. Awareness is a feature of the brain's physical action; and whereas any physical action can be simulated computationally, computational simulation cannot by itself evoke awareness.
       C. Appropriate physical action of the brain evokes awareness, but this physical action cannot even be properly simulated computationally.
       D. Awareness cannot be explained by physical, computational, or any other scientific terms. (Penrose, 1994, p. 12)

    Historical dictionary of quotations in cognitive science > Consciousness

См. также в других словарях:

  • Simulation — Simulator redirects here. For other uses, see Simulator (disambiguation). For other uses, see Simulation (disambiguation). Not to be confused with Stimulation. Wooden mechanical horse simulator during WWI. Simulation is the imitation of some real …   Wikipedia

  • Simulation theory of empathy — The simulation theory of empathy put forward by Rutgers philosopher Alvin Goldman attempts to explain how humans understand others emotions and sensations. It posits that the perception of others’ experiences activates shared neural networks in… …   Wikipedia

  • Social simulation — is the modeling or simulation, normally performed using a computer, of social phenomena (e.g., cooperation, competition, markets, social networks dynamics, etc.). A subset within social simulations are Agent Based Social Simulations (ABSS) which… …   Wikipedia

  • Crowd simulation — is the process of simulating the movement of a large number of objects or characters, now often appearing in 3D computer graphics for film. While simulating these crowds, observed human behavior interaction is taken into account, to replicate the …   Wikipedia

  • Hardware-in-the-loop simulation — Hardware in the loop (HIL) simulation is a technique that is used in the development and test of complex real time embedded systems. HIL simulation provides an effective platform by adding the complexity of the plant under control to the test… …   Wikipedia

  • Computer simulation — This article is about computer model within a scientific context. For artistic usage, see 3d modeling. For simulating a computer on a computer, see emulator. A 48 hour computer simulation of Typhoon Mawar using the Weather Research and… …   Wikipedia

  • Animal testing on non-human primates — Image taken inside Covance Experiments involving non human primates (NHPs) include toxicity testing for medical and non medical substances; studies of infectious disease, such as HIV and hepatitis; neurological studies; behavior and cognition;… …   Wikipedia

  • Collective animal behavior — Sort sol. Starling flock at sunset in Denmark Collective animal behavior describes the coordinated behavior of large groups of similar animals and the emergent properties of these groups. Facets of this topic include the costs and benefits of… …   Wikipedia

  • Dynamic simulation — is the use of a computer program to model the time varying behavior of a system. The systems are typically described by ordinary differential equations or partial differential equations. As mathematical models incorporate real world constraints,… …   Wikipedia

  • Mobbing (animal behavior) — For mobbing in relation to human bullying behavior see Mobbing Crows mobbing a Red tailed Hawk. Mobbing in animals is an antipredator behavior which occurs when individuals of a certain species …   Wikipedia

  • A Human Reaction — Infobox Television episode Title =A Human Reaction Series =Farscape Caption =John s father Season =1 Episode =16 Airdate =August 1, 1999 Production =| Writer =Justin Monjo Director =Rowan Woods Guests = Episode list =List of Farscape episodes… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»